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Abstract—Backdoor attacks have been demonstrated as a se-
curity threat for machine learning models. Traditional backdoor
attacks intend to inject backdoor functionality into the model
such that the backdoored model will perform abnormally on
inputs with predefined backdoor triggers and still retain state-of-
the-art performance on the clean inputs. While there are already
some works on backdoor attacks on Graph Neural Networks
(GNNs), the backdoor trigger in the graph domain is mostly
injected into random positions of the sample. There is no work
analyzing and explaining the backdoor attack performance when
injecting triggers into the most important or least important area
in the sample, which we refer to as trigger-injecting strategies
MIAS and LIAS, respectively. Our results show that, generally,
LIAS performs better, and the differences between the LIAS and
MIAS performance can be significant. Furthermore, we explain
these two strategies’ similar (better) attack performance through
explanation techniques, which results in a further understanding
of backdoor attacks in GNNs.

Index Terms—backdoor attack, trigger-injecting position,
graph neural networks

I. INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated their
superior performance in a variety of applications, such as
node classification [6]], graph classification [2]], image classi-
fication [30]], and natural language processing [30]. However,
GNNs are vulnerable to various adversarial attacks, including
the backdoor attack. Specifically, a backdoor attack occurs
when the adversary deliberately modifies a proportion of the
training data by adding the trigger (e.g., subgraph in a graph)
to make the model misclassify the samples with the trigger
as the target label(s). The backdoored GNN model aims to
perform normally on benign testing samples. However, if the
same trigger used in the training phase is introduced onto
a testing sample, the backdoored model exhibits a particular
output behavior of the adversary’s choosing (e.g., misclassi-
fication into to target label(s)). Backdoor attacks have been
demonstrated to perform malicious tasks on security-related
graph learning services, such as converting the label of a
fraud account to benign in a social network [[10]. Hence, the
backdoor attack is a serious threat to the practical applications
of GNNs.

Several works explored the backdoor attacks in GNNs [22],
[24]], [28]]. In these works, one idea of the trigger-injecting
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position is randomly selecting a subgraph as there is no
specific location information in a graph [21]. Another idea to
inject the trigger into a graph is to select the subgraph which
has high similarity with the trigger graph [22]]. Moreover,
based on the improvement of the explanation techniques in the
graph domain, [24] proposed injecting the trigger into the most
important or least important area of the sample. However, that
work does not provide any experimental analysis to confirm
the assumptions made. Also, there is no work so far on using
explanation tools to explain the backdoor attack behavior in
the graph domain. This work first raises a core question:

What is the attack performance when injecting trigger into
the most or least important area of the sample?

To answer this question, we explore the impacts of the
backdoor trigger-injecting position from the perspective of the
most (MIAS) or least important area of the sample (LIAS).
Although there is no location information in a graph, we can
still locate the most (least) important area in a graph, like in an
image, by using some explanation techniques [25[]. As shown
in experiments, we demonstrate that the attack performance of
LIAS is better, where the difference from MIAS can even be
significant. This observation inspires one further question:

Can we explain this difference?

There are already some works on explaining backdoor
attacks in the image domain through visualization tech-
niques [3]], [23]. For example, [3] plotted the average acti-
vations of the backdoored model’s last convolutional layer
over clean and backdoored images to explain their attack. [23]]
used the Grad-CAM [15] visualization method to explain
the backdoor attack in federated learning. One example of
explaining a backdoor attack in the image domain with Grad-
CAM is shown in Fig. [I] Comparing the heatmaps of the clean
and poisoned images on the backdoored model, we can clearly
understand how the backdoored model recognizes the trigger
pattern to achieve the backdoor attack. In contrast, applying
visualization techniques to explain the backdoor attack behav-
ior in the graph domain is difficult. First, the complexity of the
visual representation of a graph is much larger than visualizing
an image, especially for large graphs [5]. Second, visualizing
the graph neural networks to explain the backdoor attack is not
trivial as it is a time-consuming or even impossible process [/7].



Therefore, in this work, instead of using the visualiza-
tion method, we explain the difference between two trigger-
injecting strategies by computing an evaluation metric. Specif-
ically, we compute the similarity of the predicted mask of
the representative features from the backdoored model and
the target mask of the representative features from the clean
model. In our experiments, we find that the successfully
misclassified samples generally have high similarity while
the unsuccessfully misclassified samples have a much lower
similarity. However, we also find that in one specific case, the
high similarity does not lead to a successful attack. We further
study this phenomenon and find that the backdoored model
trained by MIAS can recognize the original feature pattern in
addition to the trigger pattern.

Our work is the first to revisit the trigger-injecting position
in graph backdoor attacks and provide a new perspective. Our
key contributions are:

1) We investigate backdoor attacks in GNNs by injecting
triggers into the most or least important area of the
sample.

2) We design a novel explanation framework to analyze the
causes of the difference between these two strategies.

3) We verify the difference with quantitative analysis (recall
score), which helps us further understand the backdoor
attack behavior in GNNss.

D
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Fig. 1: An example of using Grad-CAM to explain a backdoor
attack in the image domain. (a) clean image, (b) heatmap
of clean image for the true label on the backdoored model
(predicted as the true label), (c) heatmap of the poisoned image
for the target label on the backdoored model (predicted as the
target label).

II. BACKGROUND
A. Graph Neural Networks

Recently, Graph Neural Networks (GNNs) have achieved
significant success in processing non-Euclidean spatial data,
which are common in many real-world scenarios [30]. Unlike
traditional neural networks, e.g., Convolutional Neural Net-
works (CNNs) or Recurrent Neural Networks (RNNs), GNNs
work on graph data. GNNs take a graph G = (V, E, X) as an
input, where V, E; X denote nodes, edges, and node attributes,
and learn a representation vector (embedding) for each node
v € G, zy, or the entire graph, zg.

In particular, in modern GNNs, the node representation
is computed by recursive aggregation and transformation of

feature representations of its neighbors. After k iterations of
aggregation, a node’s representation captures both structure
and feature information within its k-hop network neighbor-
hood. Formally, the k-th layer of a GNN is:

o0 = AGGREGATION(k)({Zf,k_l)’ {z;’“‘l’lu 6./\/‘1)}})7

1y
2F) = TRANSFORMATION® (£{F)), ()
where zz(,k) is the representation of node v computed in the

k-th iteration. N, are 1-hop neighbors of node v, and the
AGGREGATION(+) is an aggregation function that can
vary for different GNN models. zl(,o) is initialized as node
feature. The TRANSFORMATION(-) function consists
of a learnable weight matrix and activation function. For the
node classification task, the node representation z,, is used for
prediction. In this paper, we investigate the node classification
task. Moreover, we focus on two representation models of this
family, which differ in one of the above two steps: aggregation
and transformation. In the following, we briefly describe these
models and their differences.

Graph Convolutional Networks (GCN) . Let d,, denotes
the degree of node v. The aggregation operation in GCN is
then given as:

1
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GCN performs a non-linear transformation over the aggregated
features to compute the node representation at layer k:

20 ReLU (MW *),

Graph Attention Networks (GAT) [19]. In addition to the
standard neighbor aggregation scheme mentioned above in
equation [T and equation 2] there are other non-standard neigh-
bor aggregation schemes, e.g., weighted average via attention
in GAT. Specifically, given a shared attention mechanism a,
attention coefficients can be computed by:

vu = a(WzFD w21 3)

that indicate the importance of node w’s features to node v.
Then, the normalized coefficients can be computed by using
the softmax function:

Oy, = SOFEMAT Y (Epay)- 4
Finally, the next-level feature representation of node v is:
1L
Z,E,k) =0 (P Z Z ame”zl(fl)> , (®)]
p=lueN,

where o, are the normalized coefficients computed by the p-
th attention mechanism a” and WP is the corresponding input
linear transformation’s weight matrix.



B. Backdoor Attacks

Backdoors are training time attacks that aim to achieve
misclassification at the testing phase for trigger-embedded
samples while working correctly on clean inputs. Several
studies showed that GNNs are also vulnerable to backdoor
attacks. Similar to the backdoor attack in CNNs, the backdoor
attack in GNNs can be implemented by poisoning the training
data with a trigger, which can be a subgraph with/without
features [22]], [28] or a subset of node features [24]. After
training the GNN model with the trigger-embedded data, the
backdoored GNN would predict the test example injected with
a trigger as the pre-defined target label.

C. Explainability of GNNs

Recently, several explainability techniques in GNNs have
been proposed, such as XGNN [26], GNNExplainer [25],
PGExplainer [11]], and SubgraphX [27]. These methods are
developed from different angles and provide different levels
of explanations.

GNNE«xplainer is the model-agnostic approach for providing
explanations on any GNN-based model’s predictions. Given
a trained GNN model and its prediction(s), GNNExplainer
returns an explanation in the form of a small subgraph of
the input graph, with a small subset of node features that
contribute most to the final model prediction(s). In this paper,
we focus on the GNNExplainer method as it can explain
predictions of any GNN on any graph-based machine learning
task without requiring modification of the underlying GNN
architecture or re-training.

III. THREAT MODEL

We consider a gray-box threat model assuming the attacker
can freely modify a small portion of the training dataset and
has no knowledge about the training algorithms or the models
used by the victims. We also assume the attacker performs
a dirty-label backdoor attack, where the poisoned samples’
labels are changed to the target label. Although this kind of
attack is weaker than clean-label backdoor attacks [18]], where
the labels remain unaltered, dirty label attacks are the most
common in the literature [22], [24], [28]]. The attacker’s goal
is to inject a backdoor in the given pre-trained clean GNN
model through training over the poisoned training dataset,
which achieves misclassification under the presence of a
trigger while maintaining clean high accuracy on the original
task. This threat model is realistic in real-world settings. For
example, if the training dataset is collected from public users,
the adversary can provide trigger-embedded training data to
implement the backdoor attack.

IV. METHODOLOGY
A. General Framework

As stated before, we aim to discover if and how the ex-
plainability techniques in GNNs help improve the performance
of backdoor attacks. Here, we focus on utilizing the feature-
trigger backdoor attack from [24] for the node classification
task. Generally, two steps are conducted:

(1) We apply an explainability technique (i.e., GNNEx-
plainer) on a pre-trained clean GNN model to implement
backdoor attacks based on two trigger-injecting strategies
defined below.

Definition 1 (The Most/Least Representative Features):
Through applying the GNNExplainer on the pre-trained clean
GNN model on the target node, we can obtain the original
importance order of the node features. Based on the im-
portance order information, we can locate the most or least
representative features.

Definition 2 (Most Important Area Strategy (MIAS)): We
select the most representative features of the target node and
inject the feature trigger into the corresponding dimensions.

Definition 3 (Least Important Area Strategy (LIAS)): We
select the least representative features of the target node and
inject the feature trigger into the corresponding dimensions.

We then compare the attack performance based on these two
strategies, including the attack success rate and clean accuracy
drop.

(2) Next, we try to explain the attack performance of these
two strategies by again applying the explainability techniques
on the backdoored model over the poisoned testing dataset.
As a result, we can obtain the new importance order of the
node features, which is used to compute the similarity with the
original feature importance order. The proposed framework is
presented in Fig. [2|

B. Explanation Design

The detailed process of generating poisoned training dataset
and target masks is presented in Algorithm (I} EXP(-) is
the applied GNN explanation technique, i.e., GNNExplainer,
and s is the trigger-injecting strategies, i.e., MIAS or LIAS.
The algorithm first samples a subset from the original training
dataset with a poisoning rate r (line 2). For each sampled node,
the algorithm will compute the corresponding feature order to
determine the trigger-injecting location for MIAS and LIAS.
Meanwhile, the label of the poisoned training dataset will
change to the target label. The trigger size n is the number of
the features in the feature trigger, which means n node features
will be modified. The poisoned testing dataset is obtained by
injecting a trigger (following the same strategy as the poisoned
training dataset) into the samples and changing their labels to
the target label. Finally, based on the order of representative
features, we can generate a target mask for each node in the
poisoned testing dataset (line 17). The target mask has the
same shape as the node feature vector, and the most (least)
n important features are masked in while other features are
masked out. To evaluate whether the backdoored model can
recognize the trigger pattern precisely, the number of features
to be masked in is set to be n. The target mask indicates for
the target node which features contribute more or less to the
final prediction from the pre-trained clean model 6.

Once the poisoned training dataset is generated, we can
obtain the backdoored models 6* by retraining the clean model



Algorithm 1: Generate Poisoned Training Dataset and
Target Masks

Input: Pre-trained clean GNN model 6, Training set
Dyirain, Testing set Dyest, Trigger-injecting strategy
s € {MIAS, LI AS}, Target label y; € [0, C)
Output: Poisoned training dataset ﬁfmm, Poisoned testing
dataset D;,,,, Target masks M;
/* Sampling Training Dataset to Inject Trigger */
bf’r'ain «— Sample(Dt"‘ain7 Yy # yt)
foreach {z,y} € D} .;, do
/* Computing Order of Representative Features */
feature_order = EXP(0,x,y)
%° = Inject_Trigger(x, feature_order, s)
9° =y
end
Dies < Diest[\yt]
M? + 0
foreach {z,y} € D, do
/* Computing Order of Representative Features */
feature_order = EXP(0,x,vy)
%° = Inject_Trigger(x, feature_order, s)
9" =y
/* Generating Target Mask */
= Get_Mask(feature_order, s)
M¢{ = My Um;
end
return D:'rainy ﬁ:esh ]‘Jtg

LIRS B N N L

[ - I - R S
S %o N AW N =S

Algorithm 2: Train Backdoored GNN Models and
Generate Predicted Masks
Input: Pre-trained clean GNN model 6, Training set
Dirain, Poisonqd training dataset Di¢,qin, Poisoned
testing dataset Dycs¢, Trigger-injecting strategy
s € {MIAS,LIAS}
Output: Backdoored GNN model 6°, Predicted Masks M,
/* Training Backdoored Models */
/A* {x,y} € Dtr(n’ns {i,s’/gs} S ﬁ?rain */
0% = argmine(zi L(xh yi; 0) + Zz L(i’:» i3 9))
My <+ 0
foreach {i°,§°} € Dj.,, do
/* Getting Predictive Mask */
feature_order = EXP(éA?S7 z°,9°%)
m; = Get_Mask( feature_order)
My = M, Um;

=TI B N 2 S

end
return 0°, M,

—
-

0 with the backdoored training dataset. [1_-] The process of
training the backdoored models and obtaining predicted masks
is shown in Algorithm [2] To analyze the impact of injecting
trigger into the most/least important part of the node features
on the attack performance, we compare the attack performance
of GMIAS and 9LIAS including the attack success rate and
clean accuracy drop. Finally, for the poisoned testing dataset,
which we used to calculate the attack success rate, we again
utilize the GNNExplainer to obtain the new feature importance

'In this work, we combine the original training dataset and the poisoned
training dataset as the backdoored training dataset.

order for each node on the the backdoored GNN model
GMIAS or GLIAS (line 7). The new feature importance order
is used to generate the predicted mask which shows the
importance of each feature for the final prediction from the
backdoored GNN model. Combining the target masks we
get in Algorithm [T} we can compute the similarity between
the ordering of the new representative features and the old
ones by calculating the recall score of the target mask and the
predicted mask:

TP(Mg, M) o
TP, M; )+ FN (M 05 ) ©
MtSZ(MS ) [07...’1 1,...’0]7

where RS? is the recall score of the ith poisoned testing
sample with s strategy, My, and M, is the target mask,
and predictive mask of the ith poisoned testing sample, T'P
and F'N is the true positive and false negative rate of these
two masks, respectively, and N is the number of the poisoned
testing dataset. We assume that higher similarity indicates that
the backdoored model can better recognize the trigger pattern,
contributing to better attack performance.
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(b) Procedure of explaining two attack strategies.

Fig. 2: An illustration of backdoor attack and explanation
framework.

V. EXPERIMENTAL RESULTS
A. Experimental Setting

We implemented the backdoor attack on the node classifica-
tion task using the PyTorch framework. All experiments were
run on a server with 2 Intel Xeon CPUs, 1 NVIDIA 1080
Ti GPU with 32GB RAM, and Ubuntu 20.04 LTS OS. Each
experiment was repeated 10 times to obtain the average result.
Dataset. For our experiments, we use two publicly available
real-world datasets for the node classification task: Cora [16]
and CiteSeer [[16]. These two datasets are citation networks in
which each publication is described by a binary-valued word
vector indicating the absence/presence of the corresponding



word in the collection of 1,433 and 3,703 unique words,
respectively.

For each node classification dataset, we split 20% of the
total nodes as the original training dataset (labeled), and the
rest of the nodes are treated as the original testing dataset. To
generate the backdoored training dataset, we sample 10% of
the original training dataset to inject the feature trigger and
relabel these nodes with the target label. The trigger size is
set to 5% of the total number of node feature dimensions.
We set these parameters as they provided the best results after
conducting a tuning phase.

Models and training. We use the popular GAT [19] and
GCN [8] models, as these two methods are state-of-the-art
GNN models for the node classification task. We train the
clean and backdoored GNN models with a learning rate of
0.005 and use Adam as the optimizer.

Attack evaluation metrics. To compare the attack perfor-
mance of MIAS and LIAS, we utilize two commonly used
backdoor attack evaluation metrics:

1) Attacks Success Rate (ASR): measures the backdoor

performance of the model on a fully poisoned dataset
D. It is computed as ASR = w where 6 is
the poisoned model, &; is a poisoned input, z; € D, Yt
is the target class, and I is an indicator function.

2) Clean Accuracy Drop (CAD): measures the effect of
the backdoor attack on the original task. It is calculated
by comparing the performance of the poisoned and clean
models on a clean holdout testing set. The accuracy drop
should generally be small to keep the attack stealthy.

B. Results and Analysis

Results. The backdoor attack results on two graph datasets
based on two models and two trigger-injecting strategies are
shown in Fig. 3] In particular, the ASR and CAD of two
GNN models on two datasets are presented in Table [ We can
observe that both strategies can achieve a high attack success
rate, i.e., more than 97%, except GCN on the Cora dataset with
MIAS. In addition, in most cases, the ASR of LIAS is slightly
higher, around 1%, than that of MIAS. However, for the GCN
model on the Cora dataset, the ASR of LIAS is significantly
higher: more than 8%, than the MIAS. We can also see that
the CAD for all datasets and models is unnoticeable, and the
difference between the two strategies over CAD is negligible.
Analysis. Next, we investigate the reason why the backdoor
attack performance of the LIAS is somewhat higher or signif-
icantly higher (for the GCN model on the Cora dataset) than
the MIAS. As mentioned in Section [[V] we calculate the recall
score of the target mask and the predicted mask to evaluate
the similarity between the ordering of the new representative
features and the old ones.

The histogram of recall scores over the poisoned testing
dataset of all datasets and models is shown in Fig. il We
can observe that most poisoned testing samples have a recall
score of more than 0.5 in both MIAS and LIAS, which
results in a high attack success rate for both strategies. To
further investigate the slight advantage of the LIAS over the

GCN-MIAS GCN-LIAS GAT-MIAS

GAT-LIAS

o
0 100 200 300 [ 100 200 300 0 160 200 300 [ 100 200 300
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(a) Cora.
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(b) CiteSeer.

Fig. 3: Backdoor attack results of two trigger-injecting strate-
gies.

MIAS, we split the poisoned testing samples into two parts,
one is misclassified into the target class successfully, and the
other one is not, and compute the recall scores for these
two parts, as shown in Fig. 5] We notice that, generally,
the successfully misclassified nodes have significantly higher
recall scores than those not misclassified into the target class.
This phenomenon is consistent with the assumption mentioned
in Section [IV] i.e., the higher similarity between the ordering
of the new representative features and that of the original ones
indicates that the backdoored model can recognize the trigger
pattern better. When comparing the second column and the
last column of Fig. 5b and [5d] we also see that LIAS
has fewer nodes with low recall score than MIAS, which we
believe is the reason of higher ASR of LIAS than MIAS.

In contrast, we surprisingly see that for the GCN model
on the Cora dataset with MIAS, the unsuccessfully misclas-
sified nodes also have a high recall score as the successfully
misclassified nodes. We assume that the main reason behind
this is that, under the MIAS, the feature trigger is injected
into the positions of the most representative features. Thus the
backdoored model will recognize not only the trigger pattern
but also the representative feature pattern for the original label.
Therefore, for MIAS, it is possible that even the poisoned
testing samples that are not successfully misclassified into
the target class will have a high recall score. We verify this
hypothesis by extending the target masks and predicted masks
twice the feature trigger length, i.e., 2 * n, and computing
the recall scores again. E] The histogram of the new recall
scores of the GCN model on the Cora dataset is shown in
Fig. [l We also checked the prediction of the backdoored
model over the unsuccessfully misclassified nodes. The output
indicates that all these nodes are classified into their original
classes. Comparing Fig. [5a] and [6] we observe that the recall
scores of the successfully misclassified nodes generally reduce

2Here, we select an extension rate of 2. To verify the hypothesis, the
extension rate can be set to v > 1, and the recall scores of the successfully
misclassified nodes are expected to reduce to 1/+ of that without extended
masks.



TABLE I:

Backdoor attack performance of MIAS and LIAS (SD: standard deviation).

MIAS
Dataset GCN GAT
ASR + SD CAD + SD ASR + SD CAD + SD
Cora 90.08% =+ 0.29% 0.32% + 0.19% 97.91% + 0.12% 0.34% + 0.24%
CiteSeer 97.70% £ 0.10% 0.32% +0.17% 98.54% =+ 0.09% 0.71% % 0.20%
LIAS
Dataset GCN GAT
ASR + SD CAD + SD ASR + SD CAD + SD
Cora 98.65% + 0.06% 0.27% +0.21% 99.89% + 0.03% 0.27% £ 0.21%
CiteSeer 98.96% + 0.07% 0.15% + 0.18% 99.88% =+ 0.03% 0.80% + 0.17%

to half of that without extended masks. We believe this is
because, for these nodes, the backdoored model recognizes
the trigger location exactly, and when we extended the masks
twice the trigger length, only half of the features can be
recalled. However, we can also see that for the MIAS, the
recall scores of the unsuccessfully classified nodes are still
as high as those without the extended masks. This is because
the backdoored model recognizes the feature pattern for the
original label (that is why these nodes are classified into the
original class and the attack is not successful), so even if the
masks are extended, the recall score is still high.
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Fig. 4: Histogram of recall scores over the poisoned testing
dataset.

VI. RELATED WORK

Backdoor Attacks in GNNs Several works have conducted
backdoor attacks in GNNs. Zhang et al. presented a subgraph-
based backdoor attack in GNNs for graph classification
task [28]. Xi et al. proposed a subgraph-based backdoor attack
in GNN:ss, for both node classification and graph classification
tasks [22]. Xu et al. explored the trigger-injecting position for
the graph backdoor attack [24]], representing the most related
work to our paper. However, in that paper, the authors only
provided assumptions about the results, and no experimental
analysis was given to confirm the assumptions. In this work,
we give an empirical analysis of the attack results, which leads
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Fig. 5: Histogram of recall scores over two parts of the
poisoned testing dataset (S means the nodes are successfully
misclassified into the target label, U means not).
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Fig. 6: Histogram of recall scores of GCN model on Cora
dataset with extended masks (S means the nodes are success-
fully misclassified into the target label, U means not).



to further understanding of the backdoor attack behavior in
GNNs.

Explanability in GNNs GNNs have become increasingly pop-
ular since many real-world data can be naturally represented
as graphs, such as social networks, chemical molecules, and
financial data [4], [29]]. Consequently, numerous approaches
are proposed to explain the predictions of GNNs. Generally,
these methods can be categorized into two mainstream lines
of research. One is the parametric explanation methods that
are widely used nowadays. For instance, GNNExplainer [25]
learns soft masks for edges and node features to explain the
predictions via mask optimization. The soft masks are ran-
domly initialized and treated as trainable variables. [11] pro-
posed PGExplainer to collectively explains multiple instances
with a probabilistic graph generative model. XGNN [26] uses
a graph generator to generate class-wise graph patterns to ex-
plain GNNss for each class. Vu et al. proposed PGM-Explainer,
a Bayesian network on the pairs of graph perturbations and
prediction changes [20].

The other line is the non-parametric explanation meth-

ods, which do not involve any additional trainable models.
They employ heuristics like gradient-like scores obtained by
backpropagation as the feature contributions of a specific
instance [1]], [13[], [[14]
Explainability for Backdoor Attacks With the thriving devel-
opment of explainability techniques in machine learning, the
attacker can use model explanations to gain knowledge about
the model to perform the adversarial attacks [12]. Kuppa et
al. [9]] used counterfactual explanations to find the malware
features that most heavily impact the classifier decision. They
used this knowledge to craft adversarial training samples that
efficiently poison the model. Severi et al. [[17] used SHAP
to craft backdoor triggers in malware detectors. Utilizing
the explanation, they determined which features to poison,
resulting in a success rate of up to three times higher than
that of a greedy algorithm that does not use explainable
artificial intelligence (XAI). Xu et al. [24]] injected backdoors
into GNNs by leveraging XAI techniques. Although there
is an increasing number of works on utilizing explanation
techniques to implement backdoor attacks in deep learning
models, there is no work on using explanation tools to explain
the backdoor attack behavior in the graph domain.

VII. CONCLUSION AND FUTURE WORK

This paper provides a comprehensive analysis and expla-
nation of graph backdoor attacks with two trigger-injecting
strategies; MIAS and LIAS. We investigate the node classi-
fication task and compare the attack performance for these
two strategies. Our findings show that LIAS always achieves
higher attack performance than MIAS. We further explain
the difference with quantitative analysis, which contributes
to a further understanding of the backdoor attack behavior
in GNNs. Future work will include explaining the backdoor
attack behavior of two trigger-injecting strategies in the graph
classification task. More precisely, we would compute the
similarity between the new representative subgraph and the

old one by calculating the recall score of the target mask and
the predicted mask.
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